Plans for fine-grained multi-
threading in Cactus to improve
efficiency and scalability

Erik Schnetter, Perimeter Institute
Einstein Toolkit Workshop 2015
Stockholm, August 12, 2015

State of the Toolkit

Current state:
Cactus parallelizes via MPI+OpenMP
Functions (“compute kernels”) are explicitly scheduled
Driver performs domain decomposition

Problems:
MPI programming is cumbersome, OpenMP is not efficient
Writing a schedule is difficult (i.e. near impossible)
Domain decomposition doesn’t scale well
Also:
Horizon finding / 1/O are not really parallel

Prolongation leads to load imbalance

No easy way to fix all this

The Plan

* Parallelism:
Execute flesh, scheduler, high-level functions only on one process
Treat compute nodes similar to accelerators

* Scheduling:

Determine dependencies dynamically (before/after), allow
concurrent execution

Determine many actions automatically (sync, prolongation,
boundary conditions)

Execute functions only when their results are needed
Manage time levels automatically

* Domain decomposition:
Decompose domain into small, equal-sized blocks (e.g. 83)
Assign blocks to caches, reassign to balance load

Background

* |Ideas from other codes:
Uintah, HPX, Madness, Charm++
* Theory:
Discussions with MPI developers
Disappointing open source OpenMP implementations
“MPI+MPI” programming model

* Other tools / languages:
Grand Central Dispatch (Apple), Qthreads (Sandia, Chapel)
HPX (LSU)
mpi4py, Boost.Serialization, Cereal
C++11
Haskell

Existing Ingredients

* Cactus scheduling:
Brief, conceptual work on “requirements”

Chemora (with J. Tao, S. Brandt): scheduled functions declare
their inputs and outputs (“reads” and “writes”), used for OpenCL/
CUDA programming

* FunHPC:

C++ library combining MPI, Cereal, Qthreads etc., for HPC
programming in a functional style

* Proof of concept: Standalone 1d WaveToy implemented via
FunHPC

Easy to read (even the “schedule”)
Scales to 16k cores

Chemora

* See Steve Brandt’s presentation earlier

° In brief:

n u

Schedule annotated via “reads”, “writes” statements describing

inputs and outputs
Also describing affected regions (interior, boundary, everywhere)
Sufficient to detect most user-level errors

Used to automatically run calculations with CUDA, where data
need to be copied between host and device

* Plans:

Automate many more things, e.g. syncs, boundary conditions

FunHPC

Example: 1d WaveToy
Distributed via MPI, multi-threaded via Qthreads

* Simple code, easy to read, easy to get “right”
* Memory management:

Handled by C++11 (shared_ptr and friends)
* Multi-threading:

Conflicts (deadlocks, undefined behaviour) provably avoided by
functional style

» “Cactus” structure (parameters, grid functions, schedule,
routines, driver tasks) easily visible in code

Example: Fibonacci Numbers

* int fib(int n) {
if (n==0)
return O;
if (n==1)
return 1;
auto f1 = gthread::async(fib, n - 1);
auto f2 = gthread::async(fib, n - 2);
return f1.get() + f2.get();
}

Example: 1d WaveToy

* Uniform grid:
A distributed, lazy array,
implemented via a tree where each element is a (small) vector

* template <typename T>
using storage_t = adt::tree<funhpc::proxy, std::vector, T>;

struct grid_t {
real_t time;
storage_t<cell_t> cells;

5

Example: 1d WaveToy

* State vector (i.e. all relevant grid functions):

* struct state_t{
int_titer;
grid_t state;
grid_t error;
gthread::shared future<norm_t> fnorm;
gthread::shared_future<real t> fenergy;
grid_trhs;

Example: 1d WaveToy

* State vector constructor (i.e. schedule):

* state t(int_titer, const grid_t &grid):
iter(iter),
state(grid),
error(grid_error(grid)),
fnorm(qgthread::async(norm, grid)),
fenergy(gthread::async(energy, grid)),
rhs(rhs(grid))

U

Example: 1d WaveToy

* RK2 integrator:

* grid_t rk2(const state_t &s) {
const grid_t &s0 = s.state;
const grid_t &r0 = s.rhs;
auto s1 = axpy(sO, r0, 0.5 * parameters.dt);
auto rl =rhs(sl);
return axpy(s0, rl1, parameters.dt);

Example: 1d WaveToy

* Main loop (driver)
There is an I/O token, so that we can wait until 1/0 is finished

* gthread::shared_future<int> file_token =
gthread::make_ready_future(0);
state_t s(0, grid_init(parameters.tmin));
file_token = fun::fmap(file_output, file_token, s);
while (s.iter < parameters.nsteps) {
s = state_t(s.iter + 1, rk2(s));
file_token = fun::fmap(file_output, file_token, s);
}
file_token.wait();
std::cout << "Done.\n";

The Plan

* Put this into Cactus “as-is” as proof of concept
* Store futures/proxies instead of pointers to grid functions

* Use Carpet to produce respective domain decompositions
(already implemented, used both for AMR and DGFE)

* Rewrite Cactus scheduler to use threads, futures

* See Chemora (scheduler rewriting)
* See DGFE (fewer ghost zones)
* See SpEC code (being redesigned with Charm++)

