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m High order methods (4th, 6th, etc) are becoming increasingly
popular in Numerical relativity.

® In 3D simulations Mesh Refinement can lead to significant savings in
computational resources.

m Current trends aim to combine the accuracy of high order methods
with the adaptive resolution capabilities offered by AMR.

m Carpet, BAM, GridRipper, GRChombo, etc.
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AMR Overview
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Challenge I: Order reduction
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challenges

Stability issues and loss of convergence at high resolutions.
Spurious reflections at interface boundaries.

Non trivial to code.

Requires dynamic load balancing.

Loss of conservation at interface boundaries.

Robustness of error estimation methods.

High order interpolation in three space dimensions is not cheap.
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Continuous Runge Kutta Method

. Avoid polynomial interpolation!
Intermediate stages

ki = hf(t, y) bi(0) =6 — 36° 4 263
ke = hf(t+ %h y+%hk1) bo(0) = 62 — 36°
ks = hf(t + Lh,y + 1hky) by(0) = 62 — 263
k4=hf(t+hy+k3) by(8) = 5924_%93
4
y(t+0h) =y(t)+ Y bi(O)k 0<6<1
i=1

(m)

d m
iy Y (ta + 0h) = hmdeem)b(e )+ O(h*~™)
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Boundary Conditions

m Step 1: Compute the Taylor expansions of the intermediate stages
(Autonomous system).

ki = hf
h? h3 h* 5
ko = hf + ?fyf+ gfyy(f, f)+ 4—8fyyy(f, f,f)+0O(h)
h? h?
k3=hf+3ff+§[f (f, )+ 2f,f,f]

48 [fyyy(f f, f)+6fyy(f f,f) + 3f, £, (f, F)] + O(h®)

—hf+h2ff+ [fyy(f f) + f, £, f]

4

h
+ > [4f,yy (F, F, ) 4+ 12£,, (F, £,) + 3£, £, (F, F) + 6f, £, £, ] + O(h°)
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Boundary Conditions

m Step 1: Compute the Taylor expansions of the intermediate stages
(Autonomous system). One only needs the stages to third order
accuracy in order ot achieve fourth order convergence!

ko = hf
2 3

ko = hf + %fnyr %f (F. )
R

ks = hf + £, + - [y (F, ) + 26,1, f]

g |

—hf+h2ff+ [fyy(f f) + f, £, f]
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Boundary Conditions

2.0,
9 m Step 2:
1.0 Parameterize the
g solution in terms of
e a linear weight w as
ol |
g(x) = (L —w)g(x, o) + wg(x, h)
=1.
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Boundary Conditions

2.0y
" m Step 2:
19 E Parameterize the
: |l B kY solution in terms of
g % a linear weight w as
P — -
—0.5 - boxstep g(X) = (1 - W)g(Xa /0) + Wg(Xv Il)
smoothstep
smootherstep
- 20 @ e 80 T00
Smooth Transition Profiles 0 x=a _
<
w(a, b,x) =t here t— 41 b-a )
w(a, b, x) = 3t? — 2t3 where = ba
X—a 3
w(a, b,x) = 10t3 — 15t* + 65 5=y otherwise
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Example I: Gauge Wave
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Example I: Gauge Wave
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Example II: Teukolsky Wave
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Example II: Teukolsky Wave
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Summary

m Loss of convergence in high order AMR is caused by inconsistent
application of boundary conditions, not stiffness.

m Spurious reflections are caused by differences in phase speeds, not
round off error.
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