The McLachlan Code

Peter Diener
Louisiana State University

August 12, 2015
Einstein Toolkit Workshop 2015
AlbaNova University Center, Stockholm, Sweden



Outline

The ADM formulation.
The BSSN formulation.
» Kranc.

McLachlan.

v

v

v



The ADM formulation.

The 3+1 ADM evolution equations are

(O = Lp) 7ij = =20k,
(8t — ﬁg) Kij = —DiDjOé + Oé(Rij + KKZ‘j — QK,;kKkj),

with the constraints

H=R+ K> - K ;K9 =0,
M= Dj(K7 —~49K) = 0.

This set of PDE's is only weakly hyperbolic and is therefore not
suitable for numerical evolution.

However, they provide a convenient starting point for a more stable
formulation: The BSSN (Baumgarte-Shapiro-Shibata-Nakamura)?!
formulation.

Should really include Oohara-Kojima and be BSSNOK.



The BSSN formulation (new variables).

Introduce a conformal rescaling of the three metric
Yij = V45
We choose 1) = y'/12 such that det(7;;) = 1
In addition we introduce a trace decomposition of the extrinsic
curvature.
K =YKy,
1

Aij = Kij — 3%k

We then promote the following variables to evolution variables
¢ =1Intp = 1—121117, K =;; K",
Fij = €, Aij = e " Ay,
as well as the conformal connection functions

= ﬁjkf\ijk _ j,?ij‘



The BSSN formulation (evolution equations).
~ 7 ko = ~ k| =~ k2. k
Oij = — 205 + B"Okij + Vi 08" + 10iB" — g%’jakﬁ :
1 1
Op = — cak + B 0o+ SOk,
atjlij = e’4¢[—DiDja + OéRz‘j]TF + OJ(KI‘L‘]‘ — QAik/ij)
- - - 9 .
+ BRO Aij + A0 B + Ajp0;8% — gAijakﬁky
: |
WK = — D'Dja+ a(A;;AY + gKQ) + B*oLK,
-, 4 1. ) .
oI = 57%9;0,8" + gfy”ajakﬁ’f + FOT — 10, + ST'0; 57
. . . 9 ..
— 249900+ 2a(T" j ATF + 6419 9;¢ — 377 0K).
Here R;; = Rij + R;@ where
s 1, o o
Rij = — 571 DO ij + Tr(i05) T + TP )i
+4im <2fkl(ifj)km + fkimfklj> ,
R}, = —2D;D;¢ — 2%;D* Dy + 4D;¢ D;é — 47;;D"¢ D6



The BSSN formulation (constraint equations).

The constraints are

~ 2 SO
HER+§K2—A”AZ‘7:0,

~ . -~ . 2 ..
M = DAY +6470;6 — 2790, K =0,
G=3-1=0,

AE’?iinjZO,

L'=T"+0;47 = 0.

The constraints Q and A are enforced actively at each time-step.
The other constraints (H, M and L) are not enforced.
To improve stability and to help keep L' small, the following rule is
employed:
» Where derivatives of T are needed, the evolved I are used
directly.
» Where T are needed without taking derivatives, 39¥T"% ;4 are
used instead.



The BSSN formulation (gauge conditions).

1 + log family of lapse conditions.
Oa=—-FaVK + alphaDriver(a — 1) + advectLapse3'9;cx.

Harmonic slicing: FF =1, N =2,
1+ log slicing: F'=2, N = 1.
There is also a variant using A = 0;« as an evolution variable.

Hyperbolic gamma driver condition:

93" = shiftGammaCoeff B’ + advectShift 379 3",
9, B' = 8,T"* — betaDriver B' + advectShift 570, B*.

Here shiftGammaCoeff = 3/4 and betaDriver has to be chosen
appropriately for the mass of the black holes in the system.



The BSSN formulation (the WW-method).

Instead of using ¢ = 1/121n+y as an evolution variable it is also

possible to use
W = =16 = =20
in which case the evolution equation for W is
1 , .
OW = SW(aK — 0,5) + BOW,

and the expression for Rfj is similarly converted to an expression
involving derivatives of W.
We currently do not support the x-method (x = e~4%).



Kranc.

Kranc is a set of mathematica scripts initially developed by
Sascha Husa and Christiane Lechner and currently mainly
developed by lan Hinder for converting a set of tensorial
evolution equations into Cactus code.

It was originally created in order to allow easy experimentation

» with different formulations of the Einstein equations.
» Kranc produces a complete Cactus thorn including the

configuration files.

Kranc provides mathematica routines to define tensors and
their properties and how they relate to the Cactus grid
functions.

Kranc interfaces with MoL and one of it's main functions is
to produce the RHS evaluation routine for the evolution
equations.

In addition there are routines to define Cactus parameters.
The user defines “Calculations” to operate on the tensors
along with scheduling information.



McLachlan.

» McLachlan (named after the Canadian Singer/Songwriter
Sarah McLachlan) is an implementation of the BSSN
equations in Kranc.

» Supports any kind of matter through it's interface with
TmunuBase.

» The RHS routine is split into smaller pieces to avoid
instruction cache misses.

» Kranc can generate explicitly vectorized versions of the code.

» McLachlan supports the Llama multi-patch infrastructure.

> If desired, some parameters can be set at Kranc code
generation time for improved optimizations (10-20%).

» The Kranc script is readable and extensible.

» McLachlan can also generate the conformal and covariant
Z4-formulation (CCZ4).

» Kranc generates LoopControl loops so McLachlan is
OpenMP parallelized by default.



McLachlan.

» Erik Schnetter also added support in Kranc for generating an
OpenCL version.

» McLachlan currently needs the ML_BSSN_Helper thorn in
order to handle Cactus related things that are not yet
supported by Kranc itself.

> McLachlan will be able to run efficiently on GPU's with the
development of Chemora.

» Etienne et. al have proposed a set of modifications to the
gauge evolution equations that can reduce the constraint
violations significantly.

> The gauge evolution part of the code is kind of messy and
could use some cleanup and/or simplification.



McLachlan.

» The full BSSN equation description in Kranc is contained on
278 lines (including comments and empty lines).

» The total Kranc script is currently 1477 lines.
» The total number of C4++ source lines in the generated code
is more than 27, 000.

As an example

Gtl[la,1b,1c] -> (1/2 (+ PD[gt[1lb,lal,lc]
+ PD[gt[1lc,la]l,1b]
- PD[gt[1b,1c],lal))
Gt [ua,1lb,1lc] -> gtulua,ud] Gtl[ld,1lb,1c]



McLachlan.

turns into (vectorization turned off, Jacobians turned on)

CCTK_REAL Gtl111
CCTK_REAL Gtl112

0.5*JacPDstandardNthlgtll;
0.5%JacPDstandardNth2gti11;
CCTK_REAL Gt1113 = 0.5%JacPDstandardNth3gtill;
CCTK_REAL Gtl122 = -0.5x*JacPDstandardNthlgt22
JacPDstandardNth2gt12;

CCTK_REAL Gt111
Gt1l311*gtul3;
CCTK_REAL Gt211
Gt1311*gtu23;
CCTK_REAL Gt311
Gt1311*gtu33;
CCTK_REAL Gt112
Gt1312*gtul3;

Gtlilllxgtull + Gtl2llxgtul2

Gtllllxgtul2 + Gtl21lx*xgtu22

Gtl1llxgtuld + Gtl211*gtu23

Gtl112+gtull + Gtl212xgtul?

+ many additional lines of codes for the remaining tensor
components.



McLachlan.

turns into (vectorization turned on, Jacobians turned on)

CCTK_REAL_VEC Gtl111l =
kmul (JacPDstandardNthigt11l,ToReal(0.5));
CCTK_REAL_VEC Gtl112 =
kmul (JacPDstandardNth2gt11,ToReal(0.5));
CCTK_REAL_VEC Gt1113 =
kmul (JacPDstandardNth3gt11l,ToReal(0.5));
CCTK_REAL_VEC Gtl1122 =
kmadd (ToReal(-0.5),JacPDstandardNthlgt22, JacPDstandardNth2gt12) ;

CCTK_REAL_VEC Gt111 =

kmadd (Gt1111,gtull,kmadd(Gt1211,gtul2,kmul (Gt1311,gtulld)));
CCTK_REAL_VEC Gt211 =

kmadd (Gt1111,gtul2,kmadd (Gt1211,gtu22,kmul (Gt1311,gtu23)));
CCTK_REAL_VEC Gt311 =

kmadd (Gt1111,gtul3,kmadd (Gt1211,gtu23,kmul (Gt1311,gtu33)));
CCTK_REAL_VEC Gt112 =

kmadd (Gt1112,gtull, kmadd (Gt1212,gtul2,kmul (Gt1312,gtul3)));

+ many additional lines of codes for the remaining tensor
components.



