
The McLachlan Code

Peter Diener

Louisiana State University

August 12, 2015
Einstein Toolkit Workshop 2015

AlbaNova University Center, Stockholm, Sweden



Outline

I The ADM formulation.

I The BSSN formulation.

I Kranc.

I McLachlan.



The ADM formulation.

The 3+1 ADM evolution equations are

(∂t − Lβ) γij = −2αKij ,

(∂t − Lβ) Kij = −DiDjα+ α(Rij +KKij − 2KikK
k
j),

with the constraints

H ≡ R+K2 −KijK
ij = 0,

Mi ≡ Dj(K
ij − γijK) = 0.

This set of PDE’s is only weakly hyperbolic and is therefore not
suitable for numerical evolution.
However, they provide a convenient starting point for a more stable
formulation: The BSSN (Baumgarte-Shapiro-Shibata-Nakamura)1

formulation.

1Should really include Oohara-Kojima and be BSSNOK.



The BSSN formulation (new variables).

Introduce a conformal rescaling of the three metric

γij = ψ4γ̃ij .

We choose ψ = γ1/12 such that det(γ̃ij) = 1
In addition we introduce a trace decomposition of the extrinsic
curvature.

K = γijKij ,

Aij = Kij −
1

3
γijK.

We then promote the following variables to evolution variables

φ = lnψ =
1

12
ln γ, K = γijK

ij ,

γ̃ij = e−4φγij , Ãij = e−4φAij ,

as well as the conformal connection functions

Γ̃i = γ̃jkΓ̃ijk = −∂j γ̃ij .



The BSSN formulation (evolution equations).

∂tγ̃ij = − 2αÃij + βk∂kγ̃ij + γ̃ik∂jβ
k + γ̃jk∂iβ

k − 2

3
γ̃ij∂kβ

k,

∂tφ = − 1

6
αK + βk∂kφ+

1

6
∂kβ

k,

∂tÃij = e−4φ[−DiDjα+ αRij ]
TF + α(KÃij − 2ÃikÃ

k
j)

+ βk∂kÃij + Ãik∂jβ
k + Ãjk∂iβ

k − 2

3
Ãij∂kβ

k,

∂tK = −DiDiα+ α(ÃijÃ
ij +

1

3
K2) + βk∂kK,

∂tΓ̃
i = γ̃jk∂j∂kβ

i +
1

3
γ̃ij∂j∂kβ

k + βj∂jΓ̃
i − Γ̃j∂jβ

i +
2

3
Γ̃i∂jβ

j

− 2Ãij∂jα+ 2α(Γ̃ijkÃ
jk + 6Ãij∂jφ−

2

3
γ̃ij∂jK).

Here Rij = R̃ij +Rφij , where

R̃ij = − 1

2
γ̃lm∂l∂mγ̃ij + γ̃k(i∂j)Γ̃

k + Γ̃kΓ̃(ij)k

+ γ̃lm
(

2Γ̃kl(iΓ̃j)km + Γ̃kimΓ̃klj

)
,

Rφij = − 2D̃iD̃jφ− 2γ̃ijD̃
kD̃kφ+ 4D̃iφ D̃jφ− 4γ̃ijD̃

kφ D̃kφ.



The BSSN formulation (constraint equations).

The constraints are

H̃ ≡ R+
2

3
K2 − ÃijÃij = 0,

M̃i ≡ D̃jÃ
ij + 6Ãij∂jφ−

2

3
γ̃ij∂jK = 0,

G̃ ≡ γ̃ − 1 = 0,

Ã ≡ γ̃ijÃij = 0,

L̃i ≡ Γ̃i + ∂j γ̃
ij = 0.

The constraints G̃ and Ã are enforced actively at each time-step.
The other constraints (H̃, M̃i and L̃i) are not enforced.
To improve stability and to help keep L̃i small, the following rule is
employed:

I Where derivatives of Γ̃i are needed, the evolved Γ̃i are used
directly.

I Where Γ̃i are needed without taking derivatives, γ̃jkΓ̃ijk are
used instead.



The BSSN formulation (gauge conditions).

1 + log family of lapse conditions.

∂tα = −FαNK + alphaDriver(α− 1) + advectLapseβi∂iα.

Harmonic slicing: F = 1, N = 2,
1 + log slicing: F = 2, N = 1.
There is also a variant using A = ∂tα as an evolution variable.

Hyperbolic gamma driver condition:

∂tβ
i = shiftGammaCoeffBi + advectShiftβj∂jβ

i,

∂tB
i = ∂tΓ̃

i − betaDriverBi + advectShiftβj∂jB
i.

Here shiftGammaCoeff = 3/4 and betaDriver has to be chosen
appropriately for the mass of the black holes in the system.



The BSSN formulation (the W -method).

Instead of using φ = 1/12 ln γ as an evolution variable it is also
possible to use

W = γ−1/6 = e−2φ

in which case the evolution equation for W is

∂tW =
1

3
W (αK − ∂iβi) + βi∂iW,

and the expression for Rφij is similarly converted to an expression
involving derivatives of W .
We currently do not support the χ-method (χ = e−4φ).



Kranc.

I Kranc is a set of mathematica scripts initially developed by
Sascha Husa and Christiane Lechner and currently mainly
developed by Ian Hinder for converting a set of tensorial
evolution equations into Cactus code.

I It was originally created in order to allow easy experimentation
I with different formulations of the Einstein equations.
I Kranc produces a complete Cactus thorn including the

configuration files.
I Kranc provides mathematica routines to define tensors and

their properties and how they relate to the Cactus grid
functions.

I Kranc interfaces with MoL and one of it’s main functions is
to produce the RHS evaluation routine for the evolution
equations.

I In addition there are routines to define Cactus parameters.
I The user defines “Calculations” to operate on the tensors

along with scheduling information.



McLachlan.

I McLachlan (named after the Canadian Singer/Songwriter
Sarah McLachlan) is an implementation of the BSSN
equations in Kranc.

I Supports any kind of matter through it’s interface with
TmunuBase.

I The RHS routine is split into smaller pieces to avoid
instruction cache misses.

I Kranc can generate explicitly vectorized versions of the code.
I McLachlan supports the Llama multi-patch infrastructure.
I If desired, some parameters can be set at Kranc code

generation time for improved optimizations (10–20%).
I The Kranc script is readable and extensible.
I McLachlan can also generate the conformal and covariant

Z4-formulation (CCZ4).
I Kranc generates LoopControl loops so McLachlan is

OpenMP parallelized by default.



McLachlan.

I Erik Schnetter also added support in Kranc for generating an
OpenCL version.

I McLachlan currently needs the ML BSSN Helper thorn in
order to handle Cactus related things that are not yet
supported by Kranc itself.

I McLachlan will be able to run efficiently on GPU’s with the
development of Chemora.

I Etienne et. al have proposed a set of modifications to the
gauge evolution equations that can reduce the constraint
violations significantly.

I The gauge evolution part of the code is kind of messy and
could use some cleanup and/or simplification.



McLachlan.

I The full BSSN equation description in Kranc is contained on
278 lines (including comments and empty lines).

I The total Kranc script is currently 1477 lines.

I The total number of C++ source lines in the generated code
is more than 27, 000.

As an example

Gtl[la,lb,lc] -> (1/2 (+ PD[gt[lb,la],lc]

+ PD[gt[lc,la],lb]

- PD[gt[lb,lc],la]))

Gt[ua,lb,lc] -> gtu[ua,ud] Gtl[ld,lb,lc]



McLachlan.

turns into (vectorization turned off, Jacobians turned on)

CCTK_REAL Gtl111 = 0.5*JacPDstandardNth1gt11;

CCTK_REAL Gtl112 = 0.5*JacPDstandardNth2gt11;

CCTK_REAL Gtl113 = 0.5*JacPDstandardNth3gt11;

CCTK_REAL Gtl122 = -0.5*JacPDstandardNth1gt22 +

JacPDstandardNth2gt12;

CCTK_REAL Gt111 = Gtl111*gtu11 + Gtl211*gtu12 +

Gtl311*gtu13;

CCTK_REAL Gt211 = Gtl111*gtu12 + Gtl211*gtu22 +

Gtl311*gtu23;

CCTK_REAL Gt311 = Gtl111*gtu13 + Gtl211*gtu23 +

Gtl311*gtu33;

CCTK_REAL Gt112 = Gtl112*gtu11 + Gtl212*gtu12 +

Gtl312*gtu13;

+ many additional lines of codes for the remaining tensor
components.



McLachlan.

turns into (vectorization turned on, Jacobians turned on)

CCTK_REAL_VEC Gtl111 =

kmul(JacPDstandardNth1gt11,ToReal(0.5));

CCTK_REAL_VEC Gtl112 =

kmul(JacPDstandardNth2gt11,ToReal(0.5));

CCTK_REAL_VEC Gtl113 =

kmul(JacPDstandardNth3gt11,ToReal(0.5));

CCTK_REAL_VEC Gtl122 =

kmadd(ToReal(-0.5),JacPDstandardNth1gt22,JacPDstandardNth2gt12);

CCTK_REAL_VEC Gt111 =

kmadd(Gtl111,gtu11,kmadd(Gtl211,gtu12,kmul(Gtl311,gtu13)));

CCTK_REAL_VEC Gt211 =

kmadd(Gtl111,gtu12,kmadd(Gtl211,gtu22,kmul(Gtl311,gtu23)));

CCTK_REAL_VEC Gt311 =

kmadd(Gtl111,gtu13,kmadd(Gtl211,gtu23,kmul(Gtl311,gtu33)));

CCTK_REAL_VEC Gt112 =

kmadd(Gtl112,gtu11,kmadd(Gtl212,gtu12,kmul(Gtl312,gtu13)));

+ many additional lines of codes for the remaining tensor
components.


